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I. INTRODUCTION

Spin-stabilized projectiles can experience poor flights due to the influ-
ence of liquid payloads. Substantial analytical and numerical work has been
done on this problem, but quality experimental data on the primitive variables
of the liquid (pressure and velocity) are still required to evaluate the
accuracy and applicability of models and codes.

Scaled laboratory experiments simulating spin-stabilized, liquid-filled
cylinders and comparisons with theory have been reviewed by Sedney.1 The
history of experimental pressure measurements at the US Army Ballistic
Research Laboratory (BRL), Aberdeen Proving Ground, Maryland has included many
scaled simulations in a small, forced precession gyroscope fixture. Whiting
reported liquid pressure measurements for a range of relatively high Reynolds
numbers (5,000 to 500,000).2 For high Reynolds number cases, Whiting found
that the liquid behaves in a resonant manner where a maximum pressure coeffi-
cient was found by varying the ratio of coning to spin frequencies (T).
Measured and computed pressures were compared for very small angles of attack
(typically less than I degree). Figure I represents a cubic spline fit to
experimental data from Reference 2. Nonlinear and aperiodic pressures were
also observed, but few general conclusions were made. Using the same techni-
ques, a single series of measurements were completed by Nusca, Beims, and
D'Amico for a Reynolds number of 8.8. 3  They found pressure responses to he
almost linear with T. Experimentally, the linearity with coning frequency at
lower Reynolds numbers may be a result of the resonance curve broadening and
flattening with increased viscous forces. Hence, for very low Reynolds
numbers the linear results tend to occur over a small range of a resonance
curve. Cone-up pressure data were documented for a single cylinder aspect
ratio, geometry and Reynolds number. Other laboratory experiments simulating
spin-stabilized, liquid-filled projectiles 1have been performed by D'Amico5 to
examine liquid coning for low Reynolds numbdrs. In D'Amico's experiments with
Reynolds numbers greater than 1,000, the transverse moment of inertia of a
free gy, -cope was varied to find the frequencv of motion where maximum coning
growth would occur, i.e., a resonance peak. >In free gyroscope tests for
Reynolds numbers less than 100, the broadening effect of low Reynolds numbers
is also evident. Evidence of related liquid instabilities for actual flight
data was reported in References 6-8&. Recently, *a full- scale three-degree-of-
freedom flight simulator was used to examine both endwall and sidewall pres-
sure fluctuations, as well as the phase relationship between the maximum pres-
sure and cylinder orientation for a high Reynolds number of 18,200:.'M

Typically, pressure responses are resonant in nature for Reynolds numbers
above 1,0on. The periodic part of the pressure can lead to destabilizing
moments that are controlled by a particular set of physical parameters:

* cylinder aspect ratio (c/a), Reynolds number (Re), coning angle (a), and
coning frequency (T). The aspect ratio is defined as the ratio of cylinder

0 height to diameter. The Reynolds number is defined as the product of spin
rate (rad/sec) and radius squared divided by the liquid kinematic viscosity.
Finally, T is defined as the ratio of coning frequency to the inertial spin
frequency.

It was noted in Reference 3 that higher values of T would be difficult to
achieve for spin rates of 83.3 Hz. It was thought that an extended range for
T would eventually show a resonance similar to the high Reynolds number
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condition.

Recently, increases in the range of Reynolds number and T were made pos-
sible by using low spin rates. In this series of experiments, a large range
of T was achieved by reduction of the spin rate, yielding a maximum T of 0.383
(a coning rate of 11.5 Hz and a spin rate of 30 Hz). Improvements in equip-
ment reliability have led to more repeatable oscillatory pressure measurements
and have allowed measurements of internal absolute pressures. On-board cir-
cuits and a twelve-channel slip ring have replaced the previous instrumenta-
tion/telemetry system (which consisted of on-board batteries, amplification
and a transmitter/antenna). In this new series of tests, power to the
associated circuits and transducers was passed to the rotating frame via the
slip ring; hence, long run times were possible since batteries were not used
(as in References 2, 3 and 5). Optical speed sensors have replaced inductive
pickups to measure spin and coning frequencies.

II. EXPERIMENT DESCRIPTION AND OBSERVATIONS

The forced precession apparatus is documented in References 2 and 3 and
has remained relatively unchanged. Sketches showing the cylinder, gyroscope,
and coning drive are reproduced (with slight modifications where applicable)
in Figures 2-4. The same cylinder and endcaps are used for these experiments.
Other inserts are available and the resulting dimensions are given in TABLE 1.
The lucite cylinder was refitted with drive spindles which place the geometric
center of the cavity at the gimbal axis to within .01". The top cylinder end-
cap was fitted with two semiconductor pressure gages at positions r/a = 0.434
and 0.667. Pressure gage calibrations were completed and a sample is shown in

I, Figure 5. The two channel amplifier/filter circuit was designed and construc-
ted to fit in the same endcap (Figure 6). A typical transfer function for the
two channel circuit is shown in Figure 7. A hollow support tube allowed rib-
bon wire access to the slip ring assembly. The twelve-channel slip ring was
mounted to the cage and rotated with the rotor assembly at the spin frequency.
The slip ring allowed the transfer of power and pressure signals with approxi-
mately 0.24mV RMS noise amplitude at the spin frequency. Power channels were
low-pass filtered to eliminate spin noise and stray 60 Hz. Two low voltage
oscillatory signals and two low level differential DC signals were transferred
from the rotating frame to the laboratory frame (Figure 6). Circuit power
supply lines which provided ±!0.0 volts and a ground reference to the rotating
frame are not shown for clarity.

Silicon oil with a nominal kinematic viscosity of 60,000 centistokes (cs)
was used to fill the cavity. One centistoke is defined as: 1 cs = 1
cm2/sec = kinematic viscosity of water at standard conditions. The silicon
oil viscosity and densities were measured for four temperatures:

Temp (°C) Density (g/ml) Viscosity (cs)

20.0 0.073 67,100
25.0 0.969 60,600
30.0 0.965 54,800
35.0 ;  0.961 50,100

2



For the 15 degree temperature range, the density varied 1.2% and the viscosity
differed 25% using the 20 degree measurements as a reference. The viscosity
data were fitted using a base 10 logarithmic function (Figure 8). The cylin-
der was evacuated after filling to remove absorbed air. The cylinder was then
sealed (at 100% fill and at 25°C). This temperature was chosen as optimum for
testing purposes since it is close to normal room temperatures. The thermal
expansion coefficients of the lucite cylinder, aluminum endcaps, and silicon
oil are considerably different and even small room temperature changes can
produce voids or overpressures in the cavity. Other oil viscosities are
available in nominal values ranging from 1 to 100,000 cs. Given the constant
cavity radius (a = 3.1761 cm), a set of Reynolds number ranges for various
spin rates are shown in TABLE 2.

After assembly was complete, the entire rotor was dynamically balanced
and placed into the cage assembly. The cage permitted precession angles
(coning angle) from .5 to 3 degrees. The coning angle was calculated by
measuring run-out with a dial indicator set near the cam surface. The angle
is simply the arc tangent of the run-out divided by the vertical displacement
of the indicator from the gimbal axes. An adjustable cam and bushing assembly
holds the cage firmly in position. The coning angle is variable from 2.5 to
12 Hz. The spin drive is a DC motor capable of spin frequencies from 30 to
33.3 Hz. Varying the spin was the easiest method for producing small changes

*' in Reynolds number.

Slow, steady spin-ups of a 1000' filled cylinder produced variations in
internal absolute pressures. A general decrease in absolute pressure with
increasing spin was observed (TABLE 3 and Figure 9). The run time was rela-
tively short (3 min) for the case where the spin frequency was varied from 0-
80 Hz without coning motion. It was observed that the inner gage always
responded with a lower absolute pressure than the outer gage. Spinning
reduced the internal cylinder pressure on the endwall at these two radial
positions. The absolute pressure difference between gages for any spin rate
is given by:

--P (r2 - rl)(P)2
2

A comparison between predicted pressure difference and experimental difference
is also in TABLE 3. Absolute pressures were monitored continuously to remain
within the gage linear response region.

The oscillatory responses of the gages were recorded, reduced, and com-
pared with previous data. All data runs within one test set (as many as 19
runs) are for a single, constant spin rate and take approximately 20 to 30
minutes to complete. The entire system was allowed sufficient time to reach
steady-state for each coning frequency according to a settling time based on
the inherent viscous processes for low Reynolds numbers:

Settling Time (sec) = Re/Spin (rad/sec). (1)

While the cylinder was spinning and coning, the internal absolute pres-
sure would rise steadily due to viscous heating. After an extensive running

3



time, this heating caused the fluid to expand and pressurize (and eventually
overpressurize) the gages beyond the 50 psia linear limit. The gages were not
damaged since internal mechanical stops protect against overpressures to 1000
psia. No oscillating pressure signals were measured above 50 psia, and the
system was allowed to cool overnight. If the room temperature was below 240C,
a vacuum bubble was observed within the cavity. Experimental runs were only
started after room temperature increased so as to eliminate the vacuum bubble.

.1' (Future testing will include a temperature measurement system using thermis-
tors to accurately monitor liquid temperatures.)

The absolute pressures measured over an extended period of time are
listed in TABLE 4 and illustrated by Figure 10. The resulting history of
oscillatory pressure signals remained unchanged while within the linear gage
reqion. The internal pressure increase and the liquid temperature increase
produced no change in oscillatory amplitudes. The oscillatory pressure spec-
tra are not sensitive to small variations in liquid viscosity, density or
internal cavity pressure. The liquid temperature increase over the course of
this test was measured after the cylinder was quickly disassembled. The over-
pressure condition corresponded to a liquid temperature of 26.9°C. The change
in viscosity and density with temperature, as found by fitting data, was 3.4%

- in viscosity and 0.16% in density. Since internal temperature was not actual-
* ly monitored, experimental errors were assumed to be ±1% for density and +4%

for viscosity. All calculations involving viscosity and density use the 25O
.4 measured values.
.

III. OATA REDUCTION

A typical oscillatory pressure record includes responses for at least two
frequencies: one is a function of the forced oscillation produced by the

*- coning motion, while a second, and normally smaller response, occurs at the
spin frequency (Figure 11). The response at the spin frequency is a residual
effect resulting from a small dynamic imbalance in the system. Varying the
coning rate and overlaying several spectra produces an overlay map (Figure

12). A pressure coefficient (Cp) can be defined using the Fourier amplitude

of the oscillating pressure and appropriate scale factors,

c - (2)
" apa 2p2

, where P is the oscillating pressure peak amplitude

a is the precession angle

p is the fluid density

a is thp cylinder radius

p is the cylinder inertial spin rate

Y is

4
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Prograde precession is established when both the precession and spin vectors
rotate in the same direction. Retrograde precession is defined when spin and
coning have opposite senses of rotation. Response plots show the pressure

coefficient versus T. Cp and T are sensitive to the relative rotation sense

of the spin and precession. Hence, Cp and T are positive for prograde motion

and both negative for retrograde motion. A tabulation of all oscillating
pressure measurements and coefficient calculations are given for each set of
experiments.

Prior to the first data runs, gyroscope system errors based on instrument
and apparatus capabilities were determined. These are listed in TABLE 5. The
plotted data include error bars as a measure of the total system error. The

maximum and minimum C values are calculated from the error parameters. For
p

example, maximum values are simply the result of calculating Cp with the

largest pressure (pressure plus pressure error) divided by the smallest scale
factors (factor minus factor error). Error calculations in pressure coeffi-
cients are tabulated as minimum and maximum values. These values are shown as
the vertical range of error bars. T errors are represented by the horizontal
span of error caps. Error bars are omitted on some graphs for clarity.

The first experiments were performed at a Reynolds number of 8.7. The
coning angle was set at 40 mils (2.250) using a gunner's quadrant. This
method proved ineffective for smaller angles with a measurement error of 0.5
mil. Thus, smaller angles were set using a dial indicator. The data were
taken for prograde motion at 10 intervals of increasing coning rate. Addi-
tional measurements were taken as the coning speed was reduced to the slowest

rate. The results are tabulated in TABLES 6a and 6b. Cp values for the two

transducer positions are plotted in Figure 13. Throughout all of the tests,

Cp values for r/a = 0.667 always produced larger pressure coefficient values

than r/a = 0.434. This test verified the preliminary findings of Reference 3
where pressure varied nearly linearly with increasing nondimensional coning
frequency (T).

A minor modification to Reference 3 data included more exact density and
viscosity measurements extracted from Reference 6. One more test was perfor-
med at this Reynolds number of 8.7. Sets of data are included as TABLES 9a
and 9h. The data were taken for prograde and retrograde motion transducer
position = 0.667. A plot of both prograde and retrograde data (TABLES 7a and
7b) with modified Reference 3 data depicts the small differences between the
data (Figure 14). Differences in gyroscope apparatus, liquids used, and data
collection account for the data discrepancies. The new data encompass nearly

all the Reference 3 data within the Cp error range. Considering the change inp

apparatus (see References 2 and 3), it can be stated that the replication of
previous results has been accomplished.

The next area of experimentation was the verification of linear theory
applications (linear with coning angle) for low Reynolds numbers. At suffi-
ciently large coning angles and for high Reynolds number, the pressure

5



coefficient data showed nonlinear (not linear in coning angle) and even
aperiodic responses for prograde motion. 2 Figure 15 is reproduced from Refer-
ence 2. For a Reynolds number of 80,000, the nonlinearities first occur at a
coning angle of 0.22 degrees. Vertical lines connecting two points represent

* the aperiodic fluctuations in pressure. They are not representative of system
errors. Figure 15 data also shows frequency shifts for the nonlinear data.
For lower Reynolds numbers (as low as 10,000), Whiting found the nonlineari-
ties to occur at a higher coning angle. 2

A set of experiments were conducted at the coning angles of 0.5, 1 and 2.
The coning cam bushing was replaced by a thin set of roller bearings and the
coning angle was limited to a maximum of two degrees. Future testing will
include a new cam design using roller bearings. The spin rate was lowered to
70.0 Hz to extend roll bearing life. The experiments were run in much the
same fashion as previous tests. Nineteen runs were completed at each angle
for both prograde and retrograde motions and both transducer positions. The
final data are tabulated for coning angle = 0.5 degrees in TABLES 8a-b. Like-
wise, data for a coning angle of 1.0 degree are listed in TABLES 9a-b. TABLES
.la-b are arranged similarly for a coning angle of 2.0 degrees. Re = 7.3 data
are plotted in Figure 16 where prograde and retrograde are shown for the
radial position = 0.667. The 0.5 degree data differ considerably due to the
small coning angle and low signal levels. When viewed on this scale the data
do not show the nonlinear trends evidenced by Whiting at higher Reynolds
numbers.

Another aim of the experimental work was to investigate extending the
range of T by simply decreasing the spin rate. For the same range in coning
rates, an extended range of T results. A change in spin also affects a change
in Reynolds number. Reynolds number 3.1 is the result of a spin rate of 30 Hz
and a T ranging from -0.383 to 0.383. The Reynolds number 8.7 is attained at
a spin rate of 83.3 Hz and T ranges from -0.138 to 0.138. The relative exten-
sion in T for lower spin rates is evident from a comparison of Reynolds number
3.1 - 8.7 is shown in Figure 17. Larger errors in amplifier gain occur due to
the high pass filtering characteristics and low spin rates. Several tests
were run at medium spin rates of 50.0 Hz and 30 Hz. Measurements were taken
for prograde and retrograde motions for r/a = 0.667. TABLES 11a and 11b list
data for Reynolds ntuber 5.2 (Figure 18). TABLES 12a and 12b give data for

Reynolds number 3.1 (Figure 19). The experimental Cp data for Reynolds number

* 3.1 seem to have a nonlinear dependence upon T, resembling the leading edge of
a resonant response curve.

An example of two theories which are applicable at low Reynolds number

are the spatial eigenvalue method and the University of Wisconsin's finite
difference method. These codes are available at BRL.

The spatial eigenvalue method developed by Hall, Sedney and Gerber i1

reduces the incompressible Navier-Stokes equations to a set of linear partial
differential equations. The angle of coning motion is assumed small. A
particular solution is employed that satisfies the axial and lateral cylinder
wall boundary conditions. The flow variables are expressed as eigenfunction

* expansions with the coefficients determined by satisfying the cylinder endwall
boundary conditions; a least squares method has been used for this purpose.
The method runs very efficiently (less than 10 cpu seconds) on a VAX 8600

60 ,
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mini-computer for low Reynolds numbers (< 100) with small increases in
computer run time for larger Reynolds number values up to 2000.

University of Wisconsin's computation solves the steady state, incom-
pressible Navier-Stokes equations, including non-linear effects, for a
precessing/spinning cylinder at a fixed precession angle. The code uses an

N iterative finite-difference method based on modified line successive-over-
relaxation and a pressure update from the gradient of the velocity field.
Nusca 12 has shown that the code runs efficiently: (less than 1 cpu hour) on a
VAX 8600 mini-computer for low Reynolds numbers (< 80) but requires the use of
a CRAY XMP computer for larger Reynolds number values up to 300.

Comparisons of experiment to the two theories are given in Figures 20 and
21 and TABLES 13 and 14. These theories aid in examining trends and extrapol-
ation past experiment capabilities.

IV. CONCLUSIONS

A small gyroscope fixture was used to carry a liquid-filled cylinder at
relatively low spin and coning rates. The experiments were conducted under
controlled, repeatable conditions. The purpose of the experiments was to
provide a basis for full-scale simulations of liquid payloads. Based on these
preliminary results, extensive testing can be accomplished on the BRL Flight
Simulator using a full-scale cylinder and larger instrumentation payload
capacity.

Oscillatory and absolute pressure data were obtained for a relatively low
Reynolds number range. Testing included establishing instrumentation reliabi-
lity, repeating previously published low Reynolds number data, expanding the
range in nondimensional coning frequency and Reynolds number, and providing a
data base for comparisons with current linear theory applications at low
Reynolds number.
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70 -Pressure Gage #: PB3533
Slope (psta/mV): .7722

-V.

Intercept(psla):-1.1838
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GAGE OUT (mV)

Figure 5. Pressure gage calibration for r/a =0.667.
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_ Nominal 60000 cs CSL Measurements

Base 10 Log Model: Y=10^(R0+RI*X)
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Figure 8. Liquid viscosity measurements and logarithmic function fit.
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70 -A Kulite *J5-32: R/A'-.434

-1 Kulite *J5-33: R/'A.66?

0
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Spin Frequency (Hz)

Figure 9. Absolute pressure decrease on an end wall for a slow spin-up.
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80 AKulite #J5-32: R/A=.434
:1 Kulite #J5-33: R/R=.667
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10 20 40405
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- . Figure 10. Absolute pressure rise for extended running time,
'.'?.(coning rate = 5 Hz, spin rate = 70 Hz).
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IP

0.300 Re Rlpha r/a c/a Fill% Source

A:8.7 2.25 .667 3.148 100 GIB021

0:8.7 2.25 .434 3.148 100 G2R21

0.200-

PI
0.100-

,3 I , , I I I , , I I

0.050 0.100 0.150 0.200
Coning Frequency-T

Figure 13. Prograde pressure coefficient data for two radial positions

(r/a= 0.434 and 0.667 at Re near 8.8, a = 2.25').
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0.30- Re Alpha r/a c/a Fil1). Source

&:8.7 2.0 .667 3.148 100 G3B15

(3:8.7 2.06 .667 3.148 100 G3D016

&:8.9 2.00 .667 3.148 100 Ref 3(mod)"-U

0.20 n:8.9 2.00 .667 3.148 100 Ref 3(mod)

0.10I

cp- I 4 i

'%I'

.

-0.1 -

-0.10 0 0.10 0.20
* Coning Frequency -T

Figure 14. Prograde and retrograde pressure coefficient comparison with
modified Ref. 3 data for Re near 8.8, a = 2.00, r/a = 0.667.
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0.4 Re Rlpha r/a c/a FIIl% Source

A:7.3 0.50 .667 3.148 100 GIBOIO
E:7.3 0.50 .667 3.148 100 GIBOI1

0.30 0:7.3 1.00 .667 3.148 100 GIB012
- 0:7.3 1.00 .667 3.148 199 GIB013
A:7.3 2.00 .667 3.148 100 G1BO14
n:7.3 2.00 .667 13.148 100 G11015

0.20-

'pC

01

00 0 0.10 0.20

r/a -0. 0
'3 """ ,. ,Coning Frequency -T

"])]Figure 16. Prograde and retrograde pressure coefficient comparison for
"- " linearity with coning angle, Re = 7.3, a = 0.5, 1 and 2 deg,

* r/a : 0.667.
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0.8 Re ilpha r/a c/a Fill% Source

A:3.1 2.00 .667 3.148 100 G3913

0r:8.7 2.80 .667 3.148 100 G3BO15

0.607

III
C p

0.20 4

. 0. 100 0.200 0.300 0. 400 0.500

Coning Frequency -T

- Figure 17. Expanded coning frequency and error ranges due to low spin rates.
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%

a.

0.5 Re Alpha r/a c/a Fi Source

A:5.2 2.08 .667 3.148 100 G3BD12

"0:5.2 2.00 .667 3.148 106 G3BD13

0.40

0.30" p
d 0.20

0.101
It

"-'" 0

;i' 0 - -

* -0.10

I I i , I , I , I , I , , , i , , , I

* -0.20 -0.10 0 0.10 0.20 0.30
Coning Frequency -T

, Figure 18. Prograde and retrograde pressure coefficient data for
Re = 5.2, a = 2.00 °, r/a = 0.667.
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A,.
W

1.0 Re Alpha r/a c/a Fi1l1 Source

A:3.1 2.00 .667 3.148 100 G3010
1J:3.1 2.00 .667 3.148 100 G3ai

0.75

* 0.50

A'." C .251

-0.25~

A,."

'A) I

-0.25 0 0.25 0.50
m Coning Frequency -T

Figure 19. Prograde and retrograde pressure coefficient data for
Re = 3.1, a = 2.00', r/a 0.667.
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TABLE 1. Cavity Dimensions of Lucite Cylinder with Various Inserts

c (cm) a (cm) c/a Volume (cc)
Insert # 1
Maximum 3. 1838 3.1780 1.0028 202.04
Minimum 3.1802 3.1747 1.0007 201.40
Mean 3.1819 3.1761 1.0018 201.68

Insert *2
Maximum 3.3395 3.1780 1.0519 211.92
Minimum 3.3365 3.1747 1.0499 211.30
Mean 3.3378 3.1761 1.0509 211.56

Insert -3
Maximum 8.1949 3.1780 2.5813 520.05
Minimum 8.1923 3.1747 2.5778 518.80
Mean 8.1935 3.1761 2.5797 519.34

Insert #4
Maximum 8.9578 3.1780 2.8216 568.46
Minimum 8.9521 3.1747 2.8169 566.92
Mean 8.9550 3.1761 2.8195 567.61

Insert *5
Maximum 9.5292 3.1780 3.0016 604.72
Minimum 9.5259 3.1747 2.9974 603.26
Mean 9.5274 3.1761 2.9997 603.89

* Insert *6

Maximum 10.0000 3.1780 3.1499 634.60
Minimum 9.9972 3.1747 3.1457 633.10
Mean 9.9986 3.1761 3.1480 633.75
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"*':"TABLE 3. Absolute Pressure Measurements and Predicted Pressure Differences
: for Constant spin rates.

, ' ABSOLUTE PRESSURE MEASUREMIENTS

.':;.Coning (Hz)= 0 specific gravity=O.969
-."Spin r= 1.38 cm r-2.12 cm Exp Predicted
-.,"Rate Pressure Pressure &p &p
., (Hz) (psia) (psia) (psi) (psi)
•0 59.7 59.8 O,.1 0.0
"."5 59.7 59.7 0.0 0.0.10 59.5 59.6 0.1 .1

• "15 59.1I 59.3 0.2 0.2
"' 20 58,6 58.8 0.2 0.3

.. 25 58.0 58.3 0.3 0.4

,.,.30 57.2 57.6 0.4 0.6
'i35 56.2 56.8 0.6 0.9

pi40 55.0 55.9 0.9 1.1I
45 53.8 54.8 1.0 1.5
50 52.3 53.6 1.3 1 .8

.. 55 50.7 52.3 1.6 2.2
::60 48.9 50.9 2.0 2.6

O"65 47.0 49.2 2.2 3.0
"- 70 44.6 47.5 2.9 3.5

-75 42.5 45.7 3.2 4.0
80 40.0 43.8 3.8 4.6
20 37.6 4.6 4.5 5.2

'""'"31
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6

TABLE 4. Absolute Pressure Measurements for Constant Spin
(70 Hz) and Coning Motion (5 Hz)

RBSOLUTE PRESSURE MERSUREMENTS RE:7.3
SPIN(Hz):70 CONING(Hz):5 C/R:3. 148 VISC(cs):688NO

TIME KUJ532 R.R:.434 KU1533 R/R:.667
(min) Voltage(mV) Pressure(psia) Voltage(mv) Pressure(psta)
0 19.8 17.1 27.5 28.1
2 20.4 17.6 28.2 28.6
4 21.7 19.6 29.4 21.5
6 23.2 19.7 31.8 22.8
8 25.8 21.1 32.9 24.2

* 18 27.1 22.8 35.8 25.8
12 29.6 24.7 37.6 27.9
14 32.4 26.9 48.4 38.8
i6 35.5 29.3 43.8 32.6
18 39.8 32.7 47.7 35.6
28 43.4 35.5 51.3 38.4

22 47.5 38.7 55.7 41.8
24 51.9 42.1 68.1 45.2
26 56.3 45.6 64.7 48.8
28 68.9 49.1 69.1 52.2
30 65.4 52.7 73.7 55.7
32 69.5 55.8 77.9 59.8

. 34 73.5 59.8 81.9 62.1
36 77.6 62.2 84.8 64.3
38 81.6 65.3 87.1 66.1
48 85.3 68.2 89.1 67.6

-.p
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TABLE 5. Forced Precession Gyroscope System Errors

FORCED PRECESSION GYROSCOPE SYSTEM ERRORS

P.-arneter Range lnor

Codng Rate 25-12 Hz I- 0.1 Hz
Spin Rate 30-833Z +- 015 Hz
Cylinder Radus 3.1761 an +/- 00012 cm
CyMWNdel/2Ht 9.9986n +a- 00014cm

.. Fluid Viosty 60600cs +I- 4.0%
*:_, Fluid Da y 0.969g/cc +I- 1.0%

Conif Angle 5/1/2de8  +/-o2 deg
Pressure Signal 10.-145 mV rnms +- 2.0 mVnns

5% Signal Gain 450-675 +I- 2%
Rssure cal 0.7798/.7722 psi/mV +I- 02%I'. Pressue Incpt 1.652/-1.184psia +1- 2.0%

.'"" 33
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TABLE 13. Comparison of Experimental Data to Two Available LowReynolds Number Theories for Re = 3.1

- Reynolds Number: 3.1
Fill Ratio (%): 100 c/a: 3.148 r/a: 0.667

TAU EXP SPEVM* UWISC
-0.99999 -0.43679 -0.5263

-0.800 -0.18061 -0.2306
-0.600 -0.12147 -0.1180
-0.400 -0.15983 -0.1614
-0.383 -0.186 -0.16046 -0.1594
-0.350 -0.190 -0.16010 ----

-0.300 -0.181 -0.15482 -0.1578
-0.283 -0.185 -0.15186.

* -0.260 -0.176 -0.14662 ----

-0.217 -0.159 -0.13359 -0.1384
-0.183 -0.137 -0.12019
-0.150 -0.123 -0.10394 -0.1164

""" -0.117 -0.087 -0.08644 ---

-0.100 -0.084 -0.07575 -0.0797
0.100 0.116 0.10025 0.1077
0.117 0.132 0.11973 ----

0.150 0.166 0.15956 0.1742
0.183 0.226 0.20209 ----

0.217 0.274 0.24866 0.2691
0.260 0.346 0.31164 ----

0.283 0.391 0.34724
0.300 0.421 0.37432 0.4081
0.350 0.522 0.45818 ----

0.383 0.623 0.51677 0.5668
0.400 0.54805 0.6045
0.600 ---- 0.96860 1.0750

* .0.800 1.48574 1.6560
0.99999 T 2.15680 2.4040

. Number of Eigenvalues: 10
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TABLE 14. Comparison of Experimental Data to Two Available Low
Reynolds Number Theories for Re = 8.7

Reynolds Number: 8.7
Fill Ratio (%): 100 c/a: 3.148 r/a: 0.667

TAU EXP SPEVM* UWISC
-0.99999 ____ -0.71524 -0.8100

-0.800 ---- -0.3902 -0.4550
-0.600 -0.20929 -0.2303
-0.400 -0.16214 -0.1679
-0.200 -0.12099 -0.1277
-0.150 - -0.0996 -0.1058
-0.138 -0.120 -0.09363
-0.126 -0.109 -0.08731 -0.0929
-0.108 -0.097 -0.07723 ----

-0.102 -0.090 -0.07369 -0.0787
* -0.094 -0.083 -0.06884 ----

-0.078 -0.070 -0.05867 -0.0629
-0.066 -0.061 -0.05063
-0.054 -0.050 -0.04224 -0.0453
-0.042 -0.038 -0.03348 ----

-0.036 -0.032 -0.02897 -0.0310
0.036 0.038 0.03227 0.0348
0.042 0.047 0.03797 ----
0.054 0.060 0.04964 0.0537
0.066 0.075 0.06170 ----
0,078 0.090 0.07412 0.0803
0.094 0.111 0.09126
0.102 0.121 0.09971 0.1086
0.108 0.129 0.10680
0.126 0.158 0.12754 0.1387
0.138 0.175 0.14183 ----
0.150 o. o0.15648 0.1704
0.200 0.22160 0.2419

S0.400 ---- 0.54650 0.6020
0.600 ---- 0.97159 1.0767
0.800 ---- 1.49120 1.6610

0.99999 ---- 2.08436 2.3109
* Number of Eigenvalues: 10
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LIST OF SYMBOLS

a Radius of container

c Half height of cylinder

c/a Aspect ratio of container

Cp Nondimensional pressure coefficient

P Oscillating pressure magnitude

p Spin rate of the container

Re Reynolds number = a2p/V

r/a Radial position/container radius

*4 Coning angle

0 v Liquid kinematic viscosity

Sp Liquid Density

" iConing rate of the container

T Ratio of coning rate to spin rate ($1/p)
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